
C A L C U L A T I O N  OF T E M P E R A T U R E  F I E L D S  

I .  N. B o g a e n k o  and  Y u .  A .  T i m o f e e v  UDC 536.24:681.3 

:~A method is discussed for solving heat- t ransfer  problems in various regions for variable ther -  
mophysical character is t ics ,  The method is based on the reduction of boundary-value problems 
of mathematical physics to infinite systems of linear algebraic equations which can be solved by 
the reduction method. 

An increase in the accuracy of thermal  calculations requires the development of reliable and rather  
versat i le  methods of solving heat- t ransfer  problems. Among the basic heat- t ransfer  problems under con- 
sideration a re  problems of s teady-state  heat t ransfer  in various regions and for various boundary conditions, 
steady and unsteady problems with discre te  energy sources,  nonclassical problems of steady and unsteady 
heat t ransfer ,  problems to be solved by computer, and the determination of the metrological characterist ics 
of the procedure.  

w We consider a method for solving basic boundary-value problems of steady heat t ransfer  in a rect-  
angular parallelepiped described by elliptic equations. 

We consider the following problem in a domain V: 

3 
OU(x) ~ OV(x) 1 = F(x), (1) 

i=l 

M~l[U(x)l=qhz for x i = a i t ,  i = 1 , 2 , 3 ,  l = 1 , 2 ,  

where L is an elliptic operator with sufficiently smooth coefficients, 

O u  (x) 
M u [U (x)] = air - -  + ~lizV(x), 

Oxi 

Oql and 3 i l  are  constants, and a l l  + / ~ l  ~ 0. 

Supposeproblem (1), (2) has a unique classical solution; i .e . ,  a unique function U{x) exists which is 
continuous in V = V 0 I" and satisfies Eq. (1) in V and boundary conditions(2). We seek the solution of prob- 
lem (1), (2) in the form 

We rewri te  conditions (2) in the form 

By using (3)-(5), Eq. 

where 

U (x) = e (x) + �9 (x). 

My [O(x)] = O, x Cr i ,  = {xi = a i 3 ,  

M,~ W(x) ]  = %z,  x E  riz = {x ,  = ai,} .  

(1) can be written in the form 

L IO (x)] = F1 (x), 

F1 (x) = F (x) - -  L W (x)]. 

We construct the thr ice  continuously differentiable function @(x) so that it satisfies the inhomogeneous 

(2) 

(3) 

(4) 

(5) 

(6) 
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conditions (5) and s o  that  the function F 1 {x) sa t i s f i e s  the  conditions for  expansion [1] over  the  whole reg ion  
in an  absolute ly  and uniformly convergent  s e r i e s  of eigenfunctions of the L a p l a c i a n  opera to r  in the p rob lem 

AX (x) + ~X (x) = 0, (7) 

M,, [X (x)] = 0 for x, = al,, 

where  A is the  Laplacian opera to r  and # > 0. This  r equ i re s  

Mu [Fl(x)] = 0, x, = a w (8) 

The  function ~,(x) can be constructed [2] s o t h a t  w (x) = 0  is the  equation of t h e s u r f a c e  F normal ized  on 
F to  the k - th  o rde r .  

We s e e k t h e  solut ion of p rob lem (6), (4) i n t h e  f o r m  

(x) = ~ (x) ~ A.x. (x), (9) 
n ~ l  

where  the  s e r i e s  is wr i t t en  in the  na tura l  o rder  of inc reas ing  eigenvalues #n of the  Laplae ian  opera to r  in p rob -  
lem (7). 

The  {Xn(x)}~= 1 f o r m  a comple te  or thegonal  se t ,  a l l  the  eigenvalues ~n of p rob lem (8) a r e  nonnegative,  
a n d / ~ n - "  +~ as  n--.- + ~  [3]. 

The function ~(x) is constructed so  as to  sa t i s fy  the  conditions for  expansion of the functions L[7/(X)Xn(X)] 
in s e r i e s  of the  eigenfunctions of the  i a p l a e i a n  opera to r  which a r e  absolute ly  and uniformly convergent  in the  
whole domain  V for a l l  n = 1,  2 . . . . .  

In order  for  (9) to  sa t i s fy  the boundary conditions (4) for  the  second and third boundary-va lue  p r o b l e m s ,  
it is n e c e s s a r y  that  

01](X) =0 for x~=ai t .  (i0) 
Ox~ 

Substituting (9) into (6), fo rmal ly  ca r ry ing  out a l l  the  opera t ions ,  a n d  expanding both s ides of the  r e l a -  
t ion obtained in s e r i e s  of eigenfunctions of the Laplae ian  opera to r ,  which is poss ib le  because  of the  way the  
functions g,(x) and ~(x) were  chosen,  we ob ta in  

~ PmnA,~ = qm, m = I, 2, 3 . . . . .  (11) 
a ~  I 

Let 

where  

We cons ider  the  s e r i e s  

t Pm. = ! L [~l (x) Xn (x)] X,n (x) dx, 

q" = S F1 (x) X,. (x) dx. 

A~ = ~-~B~. 

n~] r n ~ l  

Since the coefficients Pmn a r e  the  expansion coefficients of the  functions L[~(X)Xn(x)] , n = 1, 2 . . . . .  which 
sa t i s fy  the expansion condit ions,  then  by using [1], the  Hb'lder inequality,  and the  fact that  

~ t~ ~ ~ -~- co according t o [41, 

3 

max I Xn (x) [ = 0 (~tn 4 ) according tO [5], 

we find J0 < +~o if 

where  e is an  a r b i t r a r i l y  s m a l l  posi t ive  number .  

(12) 

(13) 

(14) 

(15) 
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Consequently,  the  conditions of [6] a r e  sa t i s f ied  and t h e r e  is a unique solut ion of s y s t e m  (11), taking 
account  of (13), sa t i s fy ing  the  condition 

~ B~n~S R < +oa, (16) 

which can be found by one of the  ve r s ions  o f  the reduct ion  method.  

The  d i f fe rence  between the  app rox ima te  solut ion B (N) and the  exac t  solution is es t imated as 

IIP B , -  P B( mll = 0 (lip - -  P NI[ -Jr- I[ Q - -  QN/] ,  (17) 

where  

P = (P, . .WZ=)Tn.=I ,  Q = (qm)r.=z, 

P11.ttTa . . . plND-~ ~ 0 0 . , .  1 

P~ = pNll~(:. . ,  plvu~t~ ~' 0 0 . . .  i; QN = 

t 0 . . .  0 0 0 . . .  

q l  

q2 
~  

qN 
0 
0 

�9 . . 

Consequently,  the  solut ion of a h e a t - t r a n s f e r  p r o b l e m  is reduced to  the  solut ion of a finite a lgebra ic  s y s t e m  
whes e o rde r  depends on the  accu racy  demanded of the  solut ion of the  or iginal  p rob l em.  

We d e m o n s t r a t e  the  val idi ty  of a l l  the f o r m a l  operat ions  and the fact  that  (9) is the c l a s s i ca l  solution of 
p rob l em (1), (2) by proving the  un i fo rm convergence  of the s e r i e s  

S~ = I A . X .  (x) t, S2 = An ~ , 
r t ~ |  r t ~ l  

I I' 
where  i ,  j = 1, 2, 3. 

Using the  H~lder inequali ty and [7] we p rove  the convergence  of the  s e r i e s  J1, J2, J3. 

T o  so lve  p rob lem (1), (2) it is n e c e s s a r y  to  find the eigenvalues and eigenfunctions of the  Laplaeian 
opera to r  in p rob lem (7), to  cons t ruc t  the  aux i l i a ry  functions ~(x) and r by using [2], and to  calcula te  the 
coeff icients  Pmn and qm as functions of the  fo rm of the opera to r  L and the function F 1 (x). Then, depending 
on the  a c c u r a c y  demanded of the  solut ion of p rob l em (1), (2), it is n e c e s s a r y  to choose the order  of the finite 
s y s t e m  and to  so lve  i t .  We wr i t e  the solut ion of p rob lem (1), (2) i n t h e  f o r m  (3). The  r a t e  of convergence of 
r s e r i e s  in (3) depends on the smoothness  of the coefficients in Eq. (1) and on the  smoothness  of the functions 
F(x) and ~ / ,  w h e r e i = l ,  2, 3; l = 1 ,  2. 

w The  shapes  and complexi ty  of the  objects considered c r e a t e  c e r t a i n  difficulties in t h e r m a l  ca lcu la -  
t i ons .  The  s impl i f i ca t ion  and subdivis ion  of complex  regions  in t roduce addit ional e r r o r s  which show up p a r -  
r  in h i g h - t e m p e r a t u r e  p r o c e s s e s .  

Let us cons ider  the  f i r s t  boundary-va lue  p rob lem in a domain  W with a sufficiently smooth  boundary F: 

L [U (x)] = F (x), (18) 

U (x) = r x E r .  (19) 

We a s s u m e  that  the coefficients  in Eq.  (1) and the functions F(x) and ~0(x) a r e  suff icient ly smooth  and that  
p rob lem (18), (19) has a unique c l a s s i ca l  solut ion which we s e e k  in the f o r m  (3). 

The  function ~(x) is twice  continuously d i f ferent iable  and sa t i s f i e s  conditions (19); i . e . ,  we construct  

(x) = K0 (x) for x E F, (2 O) 

s o  as to  sa t i s fy  the  condition 

FI(x ) = 0  for xEF, (21) 
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where  

Fl(X) = F (x) - -  L [~ (x)]. 

T o  find the function $ (x) we obtain the  boundary-va lue  p rob lem 

L IO:(x)l = F1 (x), (22) 

O(x)=O for xEF. (23) 

We imbed the domain  W = W  U I" in a r ec tangu la r  para l le lepiped V and use  the ficti t ious domain  theory  
[8] to  t r e a t  in V the p rob lem obtained f r o m  (22)and (23): 

L [01 (x)] = F 1 (x), x E W, (24) 

DA [01 (x)] = O, x E V\~7, (25) 

01 (x) = O, x E F0, (26) 

01 (x) Iv+ : ~1 (x) Ir-, (27) 

dOldN(X) r + :  d01(X)dN r -D' (28) 

where  r 0 is the  boundary of domain  V, D is s o m e  la rge  posi t ive  number ,  r + and r - a r e ,  r e spec t ive ly ,  the  
ins ide  and outside of the  boundary r ,  d /dN is the n o r m a l  de r iva t ive ,  and [8] 

1 

I~(x) - -  01(x)~lL,ov~ ~ CD 2 ~Fl(x)l!L, Ov~, 

where  C is a constant  independent of ~,  ~ t ,  and D .  

Let 

co(x) ~=A.X.(x), xEW, 

O~ (x) = 

[D-leo (x) "qt (x) n=, ~ AnXn (x), x E V X W, 

(29) 

where  co(x) is such  that  the  equation co(x) = 0 is the  equation of the s u r f a c e  F, and the  s e r i e s  in (29) a r e  wr i t ten  
i n t h e  na tura l  o rder  of increas ing  eigenvalues of p rob lem (7), where  a l l  = 0 for  a l l  i = 1, 2, 3, and l = 1, 2. 

We s e e k  the function 71 (x) f r o m  the continuitT condition for  the function 

h (x) = 

~ A.gln (x), x E W, 

~ Anga,~ (x), x E V X W, 

where  

(30) 

gan (x) = L [~o (x) X.  (x)]; g2,~ (x) = A [co (x) *Ix (x) X.  (x)], 

and conditions (28) a r e  sa t i s f i ed .  

The  p roper t i es  of the  functions Xn(x) and w(x) ensure  that  the boundary conditions (26), (27) a r e  sa t i s f ied  
au tomat ica l ly .  Consequently,  for  (29) to  be  a solut ion of p rob lem (18), (19) it is n e c e s s a r y  that  

fi (x) = f.. (x), v x E V, (31) 

where  

[z (x) = { F1 (x) for x E W, 
0 for xEVNW.  

Expanding both s ides  of Eq. (31)in s e r i e s  of the  eigenfunctions of the Laplacian ope ra to r ,  which is pos -  
s ible  because  of the s t r u c t u r e  of the  function $1 (x), we obtain an infinite se t  of l inear  a lgebra ic  equations (11) 
whose coefficients  have the f o r m  
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p~ = ~g~(x)X~(x)dx, 
V 

qm = j h ( X ) X ~ ( x ) d x ,  
V 

(32) 

where 
g~(x) :{  gin(X) for xEW, 

gzn(X) for x ~ V \  W. 

: The proofs ofthe:applicability of the reduction method for solving system (11) with the coefficients (32) 
and the convergence of the series are similar to those in Sec. 1. 

The second and third boundary-valueproblems are solved by reducing them to problem (18), (19) [9]. 
In this case an additional system analogous to (11) must be solved, but this presents no difficulty when a com- 
puter is used. 
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