CALCULATION OF TEMPERATURE FIELDS
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=A method 48 discussed for solving heat-transfer problems in various regions for variable ther-
mophysical characteristics. The method is based on the reduction of boundary-value problems
of mathematical physics to infinite systems of linear algebraic equations which can be solved by
the reduction method.

An increase in the accuracy of thermal calculations requires the development of reliable and rather
versatile methods of solving heat-transfer problems. Among the basic heat-transfer problems under con-
sideration are problems of steady-state heat transfer in various regions and for various boundary conditions,
steady and unsteady problems with discrete energy sources, nonclassical problems of steady and unsteady
heat transfer, problems to be solved by computer, and the determination of the metrological characteristics
of the procedure.

§1., We consider a method for solving basic boundary-value problems of steady heat transfer in a rect-
angular parallelepiped described by elliptic equations,

We consider the following problem in a domain V:

LIV (9] = :21 (o (205 ) o)) O~ P, a)
MU =9y for x;=0a; i=1,2,31=1,2, 2)
where L is an elliptic operator with sufficiently smooth coefficients,
Myl (0] = g 2 4 B0 (),

@iy and Bjj are constants, and af; + g}, = 0.
Suppose problem (1), (2) has a unique classical solution; i.e., a unique function U(x) exists which is

continuous in V =V U T and satisfies Eq. (1) in V and boundary conditions(2). We seek the solution of prob-
lem (1), (2) inthe form

U(x) =8 (x)+ Fx). (3)

We rewrite conditions (2) in the form
Mul8(@)] =0, x€T; ={x;=ay}, @)
Myl¥ () =@y x€Ty ={x;=ay} ()

By using (3)-(5), Eq. (1) can be written in the form
L8 ()] = Fy(x), (6)
where
F,(x) = F(x) — LI¥ (%)].

We construct the thrice continuously differentiable function ¥(x) so that it satisfies the inhomogeneous
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conditions (5) and so that the function F(x) satisfies the conditions for expansion [1] over the whole region \Z
in an absolutely and uniformly convergent series of eigenfunctions of the Laplacian operator in the problem

AX (x) +pX(x) =0, M
Mil X (x)] =0 for X =ay,
where A is the Laplacian operator and y > 0, This requires
My lF,(0)]1=0, x,=ay. (8)

The function ¥(x) can be constructed [2] so-that w (x) =.0 is the equation of the surface I normalized on
T to the k-th order.

We seek the solution of problem (6), (4) inthe form
(1) = () X, 4,X, (), , ©)
n=1

where the series is written in the natural order of increasing eigenvalues up of the Laplacian operator in prob-
lem (7).

The {Xn(x)}n=1 form a complete orthogonal set, all the eigenvalues uy of problem (8) are nonnegative,
and pp =~ +oas n— +« 3],

The function 5 (x) is constructed so as to satisfy the conditions for expansion of the functions Lfn(x)xy(x)]
in series of the eigenfunctions of the Iaplacian operator which are absolutely and uniformly convergent in the
whole domain V for alln=1, 2, ...

In order for (9) to satisfy the boundary conditions (4) for the second and third boundary-value problems,
it is necessary that

on ()
ox;

Substituting (9) info (6), formally carrying out all the operations, and expanding both sides of the rela-
tion obtained in series of eigenfunctions of the Laplacian operator, which is possible because of the way the
functions ¥(x) and n(x) were chosen, we obtain

=0 for x;,=ay. (10)

D OunAn =Gy m=1,2,3, ..., 1)
n=1
where
Pun = § L In(0) X, (9] X, () di,
v 12)
Gm = | FL(x) X, (%) d.
v
Let
A, =pB,. (13)

We consider the series

']0 = E zllpmnp';al . (14)

n=! m=

Since the coefficients py,,, are the expansion coefficients of the functions Linx)Xp )}, n=1, 2, ..., which
satisfy the expansion conditions, then by using [1], the Holder inequality, and the fact that

E B2 << 4o according to [4],

m=1
2
max| X, (x)] = O (" ) according 1o [5],

we find J, < +e if
a>34¢, ' 15)

where € is an arbitrarily small positive number.
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Consequently, the conditions of [6] are satisfied and there is a unique solution of system (11), taking
account of (13), satisfying the condition

N B2 <R<+o0, )

n=1

which can be found by one of the versions of the reduction method.
. The difference between the approximate solution B (N) and the exact solution is estimated as
iPB—PBM| = O (P — Puf+1Q — Qi an
where

P = (pmnp';a),:,n=1 , Q= (qm);=1-

o 4

Py ..o 0 0 ... o
Py= Pai % o Pynby® 0 0...[: Qu=1|4dy
0 ... 0 00... g

Consequently, the solution of a heat-transfer problem is reduced to the solution of a finite algebraic system
whose order depends on the accuracy demanded of the solution of the original problem.,

We demonstrate the validity of all the formal operations and the fact that (9) is the classical solution of
problem (1), (2) by proving the uniform convergence of the series

I = ElAnxn(x) L = E
E n=1

n=]
2= 3

0°X, (x)
- ox;0x; |

0X,, (%)
o 9x

A

i

A

n

where i, j =1, 2, 3.
Using the Holder inequality and [7] we prove the convergence of the series Jj, Jy, Js.

To solve problem (1), (2) it is necessary to find the eigenvalues and eigenfunctions of the Laplacian
operator in problem (7), to construct the auxiliary functions 7r(x) and ¥(x) by using [2], and to calculate the
coefficients pmn and qm as functions of the form of the operator L and the function F;(x). Then, depending
on the accuracy demanded of the solution of problem (1), (2), it is necessary to choose the order of the finite
gsystem and to solve it, We write the solution of problem (1), (2) inthe form (3). The rate of convergence of
the series in (3) depends on the smoothness of the coefficients in Eq. (1) and on the smoothness of the functions
F(x) and @i, wherei=1, 2, 3; I =1, 2,

82, The shapes and complexity of the objects considered create certain difficulties in thermal calcula-
tions. The simplification and subdivision of complex regions introduce additional errors which show up par-
ticularly in high-temperature processes.

Let us consider the first boundary-value problem in a domain W with a sufficiently smooth boundary I':
LU =F(x), 1s8)
U@)=o(x), xcl. 19

We assume that the coefficients in Eq. (1) and the functions F(x) and ¢(x) are sufficiently smooth and that
problem (18), (19) has a unique classical solution which we seek in the form (3).

The function ¥(x) is twice continuously differentiable and satisfies conditions (19); i.e,, we construct
Y(x) = @(x) for x€T, (20)
so as to satisfy the condition
F (x)=0 for x€T, (21)
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where
Fy(x)=Fx)—L[¥ ).
To find the function ¢ (x) we obfain the boundary-value problem
L9 (x)] = F, (%), _ 22)
8(x)=0 for x€T. (23) .

We imbed the domain W =W U T in a rectangular parallelepiped V and use the fictitious domain theory
[8] to treat in V the problem obtained from (22) and (23):

L[9,(%)] = Fy(x), x€EW, : (24)

DA[8,(x)] =0, x€V\W, (25)

9,(x) =0, x€T,, . (26)

B () e = 01 (%) |-, (27)

ady (x) | _ _dby(x) D, ‘ @28)
dN |+ dN  [p-

where I'; is the boundary of domain V, D is some large positive number, I'tand I'" are, respectively, the
inside and outside of the boundary I', d/dN is the normal derivative, and [8]

1

18 (x) — 8, (N1, CD 2 IFy (9], ),
where C is a constant independent of 4, $;, and D,
Let

o (x) Z_IAnx,, ®), x€W,

8, (%) = . (29)
D70 (x) 1, (1) Dy AnX, (1), XEVNW,
n==1

where w(x) is such that the equation w(x) = 0 is the equation of the surface I', and the series in (29) are written
in the natural order of increasing eigenvalues of problem (7), where @jf =0 foralli=1, 2, 3, and { =1, 2,

We seek the function 7y (x) from the continuity condition for the function

o

A, g (%), x€W,
n=1

fr(x) = (30)

o

N Angon (1), xEV\W,

n=I1
where
gln (JC) = L [“J (x) Xn (X)]; g2n (JC) = A [0) (A') "1 (JC) Xn (JC)],
and conditions (28) are satisfied,

The properties of the functions Xp(x) and w(x) ensure that the boundary conditions (26), (27) are satisfied
automatically. Consequently, for (29)to be a solution of problem (18), (19) it is necessary that
fl(x)=f2(x), VxEV, (31)
where
_1 Fi(x) for x€W,
RO=1"0" o xevaw.

Expanding both sides of Eq. (31) in series of the eigenfunctions of the Laplacian operator, which is pos-
sible because of the structure of the function &, (x), we obtain an infinite set of linear algebraic equations (11)
whos e coefficients have the form
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Prn = j‘gn (x)Xm ) dx,
14

= 10 X, (525, ©2)

where
g1 (x) for x€W,

g"(x):{an(x) for XEV\ V.

 The proofs of the-applicability of the reduction method for solving system (11) with the coefficients (32)
and the convergence of the series are similar to those in Sec. 1.,

The second and third boundary-value problems are solved by reducing them to problem (18), (19) [9].
In this case an additional system analogous to (11) must be solved, but this presents no difficully when a com-
puter is used,
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